Richard Wolfson
Author
Series
Great Courses volume 16
Language
English
Description
Explore the difference between the analog and digital realms. Learn how the two states "0" and "1" can be used to represent numbers or textual information. Enter the digital age with binary numbers and operations that are the basis of computer logic, and discover logic gates and their truth tables for common logical operators.
Author
Series
Great Courses volume 12
Language
English
Description
Understand the math behind two basic rules that allow op-amps to leverage the magic of negative feedback: no current flows into op-amp inputs, and with negative feedback, V+ = V -. See how these rules allow op-amps to tame near-infinite gain in a circuit down to the exact amplification you want.
Author
Series
Great Courses volume 11
Language
English
Description
Define what "feedback" means in electronics, and how it can be used in a circuit. Learn how negative feedback utilizes communication between the output and input of an amplifier, and how operational amplifiers use this phenomenon to create thought-controlled robotic arms, intelligent light bulbs, and optical tracking systems.
Author
Series
Great Courses volume 18
Language
English
Description
By combining logic gates and positive feedback, obtain circuits with two stable states. These "flip-flop" circuits "remember" their current states until they are forced into the opposite state. Learn the inner workings of several types of flip-flops as they lay the foundations for memory circuits.
Author
Series
Great Courses volume 9
Language
English
Description
Put your knowledge to use by building a complete audio amplifier. First, create a two-stage amplifier, then add capacitors to increase the amplification, or gain. Add a power output stage to drive a loudspeaker. Finally, add a volume control. In addition, learn how biasing with diodes can eliminate a subtle form of distortion.
Author
Series
Great Courses volume 22
Language
English
Description
Because we live in an analog world - sound, time, temperature, speed, and light are all analog phenomena - it's important to be able to convert outputs of digital circuits into analog signals that we can perceive. Discover two digital-to-analog converters (DACs): weighted-resistor DACs, and the delta-sigma DACs that provide high-resolution audio for our smartphones and mp3 players.
Author
Series
Great Courses volume 3
Language
English
Description
As you grow familiar with physical properties of electric circuits, become acquainted with the instruments used to measure these quantities: voltmeters, ammeters, ohmmeters, multimeters, and the oscilloscope. See how each of these instruments interacts with a circuit to test circuit behavior or measure quantities that may vary over time.
Author
Series
Great Courses volume 6
Language
English
Description
Semiconductors make possible the transistors at the heart of electronics, including integrated circuits and computers. Learn how the atomic configuration of semiconductors makes them unique, and how engineers adjust their properties to make two types of semiconductors - P and N. Witness the critical role that PN-junctions play in semiconductor devices.
Author
Series
Great Courses volume 4
Language
English
Description
Examine the nuances of alternating and direct currents, see how transformers use electromagnetic induction to transform voltage levels in AC circuits, and observe the role of diodes and capacitors in regulating current. See how the DC power supplies that charge our cell phones are constructed so that they convert alternating to direct current.
Author
Series
Great Courses volume 21
Language
English
Description
Flip-flops can be connected together to create counting circuits. Examine the circuitry behind 2-bit, n-bit, and decade counters, then see how the interruption of a light beam can be used in conjunction with such a circuit to keep count of people walking by or products moving along an assembly line.
Author
Series
Great Courses volume 20
Language
English
Description
Examine the circuits that enable your devices to "remember" everything from contact information to your browsing history to the keystrokes you type on your computer. Compare random-access memory versus sequential memory as well as volatile and non-volatile memory.
Author
Series
Great Courses volume 17
Language
English
Description
See how distinctly different electrical circuits can implement basic logic operations, and how simple logic gates come together to form complex logic circuits, ultimately including computers. Return to transistors to see how both BJTs and MOSFETs are used to implement logic gates, the latter in an arrangement called Complementary Metal Oxide Semiconductor (CMOS).
Author
Series
Great Courses volume 19
Language
English
Description
Learn how electronic devices "talk" to each other by using flip-flops to send computer "words" one bit at a time, and observe how recipient devices reassemble incoming bits using serial-to-parallel conversions. See how Universal Serial Bus (USB) connections transmit communications between devices, and how the T flip-flop is utilized as a frequency divider in quartz watches.
Author
Series
Great Courses volume 5
Language
English
Description
From familiar audio equalizers we use to crank the bass or reduce hiss, to cell phone towers that need to separate calls coming in on adjacent channels, filtering electronic signals is often essential. Dive further into the critical role that capacitors play in electronic filters.
Author
Series
Great Courses volume 14
Language
English
Description
Explore peak detectors that "remember" the maximum voltage reached, as well as Schmitt triggers whose output retain their value until the input changes sufficiently to "trigger" a change in the output. Use these concepts to design a practical circuit: an alarm to warn if your freezer's temperature has been above freezing.
Author
Series
Great Courses volume 7
Language
English
Description
Transistors in all forms fundamentally do the same thing: they allow one electronic circuit to control another. Review the concept of electronic control, and study field effect transistors (FETs) as well as bipolar junction transistors (BJTs). See how the bipolar junction transistor can be used as a simple switch.
Author
Series
Great Courses volume 2
Language
English
Description
Meet the battery! This lecture marks your introduction to circuit diagrams, displaying the interconnected assemblages of electronic components that make a circuit function. Learn how to decipher these drawings, and see how components assembled in series or in parallel may interact differently depending on their configuration.
Author
Series
Great Courses volume 1
Language
English
Description
What is the difference between electricity and electronics? Begin your study of modern electronics by examining this distinction, and observe how electronics use the basic properties of electric circuits in a more sophisticated way. Witness firsthand how resistance is described with Ohm's law, and learn how to measure electric power.
Author
Series
Great Courses volume 8
Language
English
Description
Discover how transistors can be used to increase voltage, current, or power of an electronic signal while faithfully reproducing the signal's time variation. See how biasing and load-line analysis play key roles in amplifiers, and help prevent distortion. Learn to design a simple one-transistor audio amplifier that increases the voltage of audio-frequency signals.
Author
Series
Great Courses volume 10
Language
English
Description
Learn why large gain - infinite gain, in fact - as well as low output resistance and high input resistance are characteristics of the ideal amplifier. See how an integrated-circuit operational amplifier, or "op-amp," puts all these things together and also how the op-amp can be used as a simple comparator.